Home
Class 12
MATHS
Prove that : cos (45^0 -A) cos (45^0 -B)...

Prove that : `cos (45^0 -A) cos (45^0 -B) - sin (45^0 -A) sin (45^0 -B) = sin (A+B)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

cos (45 ^ (@) - A) cos (45 ^ (@) - B) -sin (45 ^ (@) - A) sin (45 ^ (@) - B) = sin (A + B)

Prove that: sin(45^(@)-A)=1/2cos2A

Prove that: i) sin(A+B)cos(A-B)-cos(A+B)sin(A-B)=sin2B ii) cos(45^(@)-A)cos(45^(@)-B)-sin(45^(@)-A)sin(45^(@)-B)=sin(A+B)

Prove that sin A + cos A= sqrt2 cos (45^@-A)

cos (A + B) + sin (AB) = 2sin (45 ^ (0) + A) cos (45 ^ (@) + B)

cos 45^(@)-sin 45^(@)=?

(cos (45 ^ (@) + A) -cos (45 ^ (@) - A)) / (sin (120 ^ (@) + A) -sin (120 ^ (@) - A)) =

sin (45 ^ (@) + A) sin (45 ^ (@) - A) = (1) / (2) cos2A

Prove that: cos^(2)45^(@)-sin^(2)15^(0)=(sqrt(3))/(4)

If y sin 45^0 cos 45^0 = tan^2 45^0 cos^2 30^0 then y =