Home
Class 12
MATHS
Prove that: cos 18^0 - sin 18^0 = sqrt(2...

Prove that: `cos 18^0 - sin 18^0 = sqrt(2) sin 27^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that :cos9^(0)+sin9^(0)=sqrt(2)sin54^(@)

Prove that : sin 75^0 = (sqrt(6) + sqrt(2))/4

cos18 ^ (@) - sin18 ^ (@) =

Prove that: cos18^(0)=(sqrt(10+2sqrt(5)))/(4)

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

If cos18^(@)-sin18^(@)=sqrt(x)sin27^(@) , then x=

If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@) , then n=