Home
Class 12
MATHS
Prove that: cos^2A+cos^2B-2cosA\ cos B c...

Prove that: `cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)A+cos^(2)B-2cos A cos B cos(A+B)=sin^(2)(A+B)

If A+B+C= 360^(@) ,prove that: 1-cos^(2)A-cos^(2)B-cos^(2)C+2cosA cos B cos C=0

If A+B+C=2pi , prove that : cos^2B+cos^2C-sin^2A-2cosA cosB cosC=0 .

If A+B+C=180, prove that cos^(2)A+cos^(2)B+cos^(2)C=1-2cos A cos B cos C

If A+B+C=180^0 , prove that : cos^2 A + cos^2 B + cos^2 C + 2cosA cosB cosC=1 .

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

Prove that: sin^(2)A=cos^(2)(A-B)+cos^(2)B-2cos(A-B)cos A cos B

If A+B+C=2 pi, then prove that cos^(2)B+cos^(2)C-sin^(2)A=2cos A cos B cos C

If A+B+C=0 , Prove : cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

If A+B+C=pi, prove that cos 2A-cos 2B-cos 2C=-1+4cos A sinBsinC