Home
Class 12
MATHS
Prove that: 2cos pi/(13) cos (9pi)/(13) ...

Prove that: `2cos` `pi/(13)` `cos` `(9pi)/(13)` `+cos` `(3pi)/(13)` `+cos` `(5pi)/(13)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2cos (pi)/(13) cos (9 pi)/(13)(3 pi)/(13)(5 pi)/(13)=0

The value of 2"cos"(pi)/(13)"cos"(9pi)/(13)+"cos"(3pi)/(13)+"cos"(5pi)/(13) is

The expression (cos(10 pi))/(13)+(cos(8 pi))/(13)+(cos(3 pi))/(13)+(cos(5 pi))/(13)

Prove that: (sin(8 pi))/(3)(cos(23 pi))/(6)+(cos(13 pi))/(3)(sin(35 pi))/(6)=(1)/(2)

prove that cos[(pi)/(5)]-cos[(2 pi)/(5)]=(1)/(2)

Prove that: cos^(2)pi/8 + cos^(2)(3pi)/(8) + cos^(2)(5pi)/(8)+ cos^(2)(7pi)/(8)=2

Prove that: (cos pi)/(5)(cos(2 pi))/(5)(cos(4 pi))/(5)(cos(8 pi))/(5)=(-1)/(6)

Prove that cos((pi)/(8))+cos((3 pi)/(8))+cos((5 pi)/(8))+cos((7 pi)/(8))=0