Home
Class 12
MATHS
Prove that (2cos2A+1)/(2cos2A-1)=tan(60^...

Prove that `(2cos2A+1)/(2cos2A-1)=tan(60^0+A)tan(60^0-A)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (2cos2A+1)/(2cos2A-1)=tan(60^(@)+A)tan(60^(@)-A)

prove that (1-cos2A)/(1+cos2A)=tan^(2)A

Prove that (sin2A)/(1+cos2A)=tan A

Prove that (tan^(2)A-1)/(tan^(4)A-1)=cos^(2)A

Prove that: (i) cos A cos(60^(@)-A)cos (60^(@)+A)=(1)/(4)cos 3A (ii) "tan" A+"tan"(60^(@)+A)-"tan"(60^(@)-A)=3 tan 3A .

Prove that sqrt((1-cos2 theta)/(1+cos2 theta))=tan theta where tan theta>0

Prove that sqrt((1-cos2 theta)/(1+cos2 theta))=tan theta where tan theta>0

Prove that 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x)=tan^(-1)x(x!=0)dot

Prove that: tan(pi/3-A).tan(pi/3+A)= (2cos2A+1)/(2cos2A-1)

Prove that (1-tan^(2)A)/(1+tan^(2)A)=2cos^(2)A-1