Home
Class 12
MATHS
Prove that : (cos alpha + cos beta)^2 + ...

Prove that : `(cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Prove that (cos alpha+cos beta)^(2)+(sin alpha+sin beta)^(2)=4cos^(2)((alpha-beta)/(2))

Prove that (cos alpha+cos beta)^(2)+(sin(alpha)+sin beta)^(2)=4cos^(2)((alpha-beta)/(2))

Knowledge Check

  • 2 sin^(2) beta + 4 cos ( alpha + beta ) sin alpha sin beta + cos 2 ( alpha + beta ) =

    A
    ` sin 2 alpha`
    B
    `cos 2 beta`
    C
    `cos 2 alpha`
    D
    ` sin 2 beta`
  • 2 sin ^(2) beta + 4 cos (alpha + beta) sin alpha sin beta + cos 2 (alpha + beta )=

    A
    ` sin 2 alpha `
    B
    `cos 2 beta `
    C
    `cos 2 alpha `
    D
    `sin 2 beta `
  • Similar Questions

    Explore conceptually related problems

    Prove that: (cos alpha-cos beta)^(2)+(s in alpha-s in beta)^(2)=4sin^(2)((alpha-beta)/(2))

    (cos alpha-cos beta) ^ (2) + (sin alpha-sin beta) ^ (2) = 4 (sin ^ (2) (alpha-B)) / (2)

    If cos alpha + cos beta =0=sin alpha + sin beta , then cos 2 alpha + cos 2 beta=

    Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)

    If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

    If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is