Home
Class 12
MATHS
Prove that : (cos alpha + cos beta)^2 + ...

Prove that : `(cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cos alpha+cos beta)^(2)+(sin alpha+sin beta)^(2)=4cos^(2)((alpha-beta)/(2))

Prove that (cos alpha+cos beta)^(2)+(sin(alpha)+sin beta)^(2)=4cos^(2)((alpha-beta)/(2))

Prove that: (cos alpha-cos beta)^(2)+(s in alpha-s in beta)^(2)=4sin^(2)((alpha-beta)/(2))

(cos alpha-cos beta) ^ (2) + (sin alpha-sin beta) ^ (2) = 4 (sin ^ (2) (alpha-B)) / (2)

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is