Home
Class 12
MATHS
alpha=1/(sqrt(10))*sinbeta=1/(sqrt(5)) (...

`alpha=1/(sqrt(10))*sinbeta=1/(sqrt(5))` (where `alpha,beta and alpha+beta` are positive acute angles). show that `alpha+beta = pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

alpha=(1)/(sqrt(10))*sin beta=(1)/(sqrt(5)) (where alpha,beta and alpha+beta are positive acute angles) show that alpha+beta=(pi)/(4)

If sin alpha=(1)/(sqrt(10)) and sin beta=(1)/(sqrt(5)) then prove that alpha+beta=(pi)/(4)

If sin (alpha - beta) =1/2 and cos (alpha + beta) =1/2, where alpha and beta are positive acute angles, then alpha and beta are

If (1)/(cos alpha * cos beta )+ tan alpha * tan beta = tan gamma , where 0 lt gamma lt (pi)/2 and alpha , beta are positive acute angles , show that (pi)/4 lt gamma lt (pi)/2

If sin alpha=(1)/(sqrt(5)) and sin beta=(3)/(5), then beta-alpha lies in

If sin alpha=(3)/(sqrt(73)),cos beta=(11)/(sqrt(146)) where alpha,beta in[0,(pi)/(2)] then (alpha+beta) is equal to-

If tan(alpha-beta)=1, sec(alpha+beta)=2/(sqrt(3) and alpha, beta are positive then the smallest value of alpha is

If tan alpha=(1)/(7) and sin beta=(1)/(sqrt(10)), where 0

4sin27^(@)=sqrt(alpha+sqrt(5))-sqrt(beta-sqrt(5));(alpha,beta in I^(+)) then alpha+beta=

If cos alpha=tan beta and cos beta=tan alpha where alpha and beta are acute angles then sin alpha