Home
Class 12
MATHS
sin^2 (pi/8+A/2)-sin^2(pi/8-A/2) is equa...

`sin^2 (pi/8+A/2)-sin^2(pi/8-A/2)` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

"sin"((pi)/(2)-x) is equal to:

Prove that: sin^(2)(pi/8+A/2)-sin^(2)(pi/8-A/2)=1/sqrt(2)sinA

35 .Value of sin^(2)x+sin^(2)(x+pi/3)+sin^(2)(x-pi/3) is equal to

Prove that cos^(2)(pi/8-A/2)-cos^(2)(pi/8+A/2) [1-sin^(2)(pi/8-A/2)]-[1-sin^(2)(pi/8+A/2)] =sin^(2)(pi/8+A/2)-sin^(2)(pi/8-A/2) =sin{(pi/8+A/2)+(pi/8-A/2)} sin{(pi/8+A/2)-(pi/8-A/2)} s=sinpi/4. sinA=1/sqrt(2)sinA =RHS Hence Proved.

int _(-pi//2)^(pi//2) sin | x | dx is equal to

The value of sin^(4)(pi/8)+cos^(4)((3 pi)/8)+sin^(4)((5pi)/8)+cos^(4)((7pi)/8) is equal to =

int_(-pi/2)^( pi/2)sin|x||dx is equal to

(sin((pi)/(10))+sin(13(pi)/(10)))(cos^(2)((pi)/(6))-cos^(2)((pi)/(10))) is equal to