Home
Class 12
MATHS
Prove that: cos(pi/4-x)cos(pi/4-y)-sin(p...

Prove that: `cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos(pi/4-A)cos(pi/4-B)-sin(pi/4-A)sin(pi/4-B)=sin(A+B)

cos(pi/4-A)-sin(pi/4+A)=0

cos((3pi)/4+x)-sin(pi/4-x)=?

Prove that: cos((pi)/(4)-A)cos((pi)/(4)-B)-sin((pi)/(4)-A)sin((pi)/(4)-B)=sin(A+B)

Prove that cos((pi)/(4)-x)cos((pi)/(4)+x)=(1)/(2)-sin^(2)x

Using application of trignometric formulas prove that (i)cos(pi/4+x)+cos(pi/4-x)=sqrt2cos x(i1)sin(7pi/12)cos(pi/4)-cos(7pi/12)sin(pi/4)

sin (pi/2) = 2 sin(pi/4) cos (pi/4)

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=sqrt(2)sin x