Home
Class 12
MATHS
19. Prove that sin(A +B) sin(A-B)+sin(B...

19. Prove that `sin(A +B) sin(A-B)+sin(B+C)sin(B-C) + sin(C+A) sin(C-A)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

19.Prove that sin (A + B) sin (AB) + sin (B + C) sin (BC) + sin (C + A) sin (CA) = 0

What is the value of sin(A+B)sin(A-B)+sin(B+C)sin(B-C)+sin(C+A)sin(C-A) ?

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin A sin B sin C .

sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin A sin B sin C

Prove that: (sin(A-B))/(s in As in B)+(sin(B-C))/(s in Bs in C)+(sin(C-A))/(s in Cs in A)=0

Show that: sin A sin(B-C)+sin B sin(C-A)+sin C sin(A-B)=0

Prove that: sin(B-C)cos(A-D)+sin(C-A)cos(B-D)+sin(A-B)cos(C-D)