Home
Class 12
MATHS
Show that tan{(2n+1)pi+theta}+tan{(2n+1)...

Show that `tan{(2n+1)pi+theta}+tan{(2n+1)pi-theta}=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta+1/(tan theta)=2 , then show that tan^(2)theta+1/(tan^(2)theta)= 0

If tan(pi/4+theta)+tan(pi/4-theta)=a, then tan^(2)(pi/4+theta)+tan^(2)(pi/4-theta)=(a)a^(2)+1 (b) a^(2)+2(c)a^(2)-2(d) none of these

If theta=(pi)/(4n) then the value of tan theta tan(2 theta)tan(3 theta)...tan((2n-1)theta) is

If tan((pi)/(4)+theta)+tan((pi)/(4)-theta)=a, then tan^(2)((pi)/(4)+theta)+tan^(2)((pi)/(4)-theta)=

Prove that: tan^(2)theta=tan^(2)alpha,theta=n pi+-alpha,n in Z

Show that: If theta=(2 pi)/(7), prove that tan theta tan2 theta+tan2 theta tan4 theta+tan4 theta tan theta=

If tan (alpha + theta) = n tan(alpha - theta) , show that : (n + 1) sin 2 theta = (n - 1) sin 2alpha .

if f(theta)= Costheta_1.Cos theta_2. cos theta_3….. Cos theta_n, show that { tan theta_1+ tan theta_2+ tan theta_3+…..+ tan theta_n } = - {(f' (theta))/(f(theta))},

If tan((pi)/(4)+theta)+tan((pi)/(4)-theta)=3, then the value of tan^(2)((pi)/(4)+theta)+tan^(2)((pi)/(4)-theta)