Home
Class 12
MATHS
Prove that: 2\ costhetacos\ (pi/3+theta)...

Prove that: `2\ costhetacos\ (pi/3+theta)cos(pi/3-theta)=cos3theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2cos theta cos((pi)/(3)+theta)cos((pi)/(3)-theta)=cos3 theta

Prove that (cos(pi+theta)cos(-theta))/(cos(pi-theta)cos((pi)/(2)+theta))=-cot theta

Prove that costhetacos""(theta)/(2)-cos3 thetacos""(9theta)/(2)=sin7thetasin8theta .

Prove that costhetacos((theta)/(2))-cos3thetacos((9theta)/(2))="sin"((7theta)/2)"sin"4theta

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

Prove that (cos^(3)theta-cos 3theta)/(cos theta)+("sin"^(3)theta+"sin" 3theta)/("sin" theta)=3 .

cos((3 pi)/(2)+theta)*cos(2 pi+theta)=

If theta=(pi)/(9), prove that cos theta cos2 theta cos3 theta cos4 theta=(1)/(16)

Prove that: cos^(2)theta+cos^(2)((pi)/(3)+theta)+cos^(2)((pi)/(3)-theta)=(3)/(2)