Home
Class 12
MATHS
Prove that : sin alpha + sin beta + sin ...

Prove that : `sin alpha + sin beta + sin gamma - sin (alpha + beta + gamma) = 4 sin ((alpha+beta)/2).sin ((beta+gamma)/2).sin ((gamma + alpha)/2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))sin((beta+gamma)/(2))sin((gamma+alpha)/(2))

Prove the following: "sin" alpha+"sin" beta+"sin" gamma-"sin"(alpha+beta+gamma)=4"sin"(alpha+beta)/(2)"sin"(beta+gamma)/(2)"sin"(gamma+alpha)/(2)

prove that | (sin alpha, sin beta, sin gamma), (cos alpha, cos beta, cos gamma), (sin 2alpha, sin 2beta, sin 2gamma) | = 4sin (1/2) (beta-gamma) * sin (1/2) (gamma-alpha) * sin (1/2) (alpha-beta) xx {sin (beta + gamma) + sin (gamma + alpha) + sin (alpha + beta)}.

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If alpha + beta+gamma=pi , prove that sin^2 alpha + sin^ beta - sin^2 gamma = 2sinalpha sinbeta cosgamma

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)