Home
Class 12
MATHS
Prove that : 2 sin^2 theta + 4 cos (thet...

Prove that : `2 sin^2 theta + 4 cos (theta + alpha) sin alpha sin theta + cos 2 (alpha + theta)` is independent of `theta.`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alpha sin theta + cos2(alpha + theta ) is independent of theta , the value of n is

The value of 2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta)

Prove that cos^(2)theta + cos^(2)(alpha + theta) – 2cos alpha *cos theta* cos(alpha +theta) is independent of theta .

Show that cos^(2)theta+cos^(2)theta(alpha+theta)-2cos alpha cos theta cos(alpha+theta) is independent of theta.

Show that: cos^(2)theta+cos^(2)(alpha+theta)-2cos alpha cos theta cos(alpha+theta) is independent of theta.

Prove that the expression cos^(2)theta+cos^(2)(alpha+theta)-2cos alpha cos theta cos(alpha+theta) is independent of theta and also find the maximum value of the expression.

Prove that : (1+sin2 theta-cos 2theta)/(sin theta+cos theta)=2sin theta

tan theta = (sin alpha-cos alpha) / (sin alpha + cos alpha)

If sin^(2)(theta-alpha)cos alpha=cos^(2)(theta-alpha)sin alpha=m sin alpha cos alpha, then

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then