Home
Class 12
MATHS
Prove that sin^3alpha+sin^3((2pi)/3+alp...

Prove that `sin^3alpha+sin^3((2pi)/3+alpha)+sin^3((4pi)/3+alpha)=-3/4sin3alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(3)alpha+sin^(3)(120^(@)+alpha)+sin^(3)(240^(@)+alpha)=-(3)/(4)sin3 alpha

The value of sin^(2)alpha+sin((pi)/(3)-alpha)sin((pi)/(3)+alpha) is

(1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3)+alpha)] is equal to

sin alpha * sin (60-alpha) sin (60 + alpha) = (1) / (4) * sin3 alpha

prove that 4sin alpha*sin(alpha+(pi)/(3))*sin(alpha+(2 pi)/(3))=sin3 alpha

sin alpha+sin(alpha+((2pi)/3))+sin(alpha+((4pi)/3))=0

If cos3 theta=cos3 alpha, then the value of sin theta can be given by +-sin alpha(b)sin((pi)/(3)+-alpha)sin((2 pi)/(3)+alpha)(d)sin((2 pi)/(3)-alpha)

If sin(x+3 alpha)=3sin (alpha-x) then

Show that 4sin alpha*sin(alpha+(pi)/(3))sin(alpha+2(pi)/(3))=sin3 alpha