Home
Class 12
MATHS
Prove that :(cos A + cos B)^2 + (sin A +...

Prove that :`(cos A + cos B)^2 + (sin A + sin B)^2 = 4cos^2\ (A-B)/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

to prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

Prove that: (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)backslash(A-B)/(2)

Prove that: ((cos A+cos B)/(sin A-sin B))^(n)+((sin A+sin B)/(cos A-cos B))^(n)={2cot^(n)((A-B)/(2)),quad if niseven0,if nisodd

Prove that (1 + sin A) / (cos A) + (cos B) / (1-sin B) = (2sin A-2sin B) / (sin (AB) + cos A-cos B)

prove that ((cos A+cos B)/(sin A-sin B))^(n)+((sin A+sin B)/(cos A-cos B))^(n)=2cot^(n)((A-B)/(2)),n is even

Prove that cos(A+B) cos(A-B)-sin(A+B) sin(A-B)=cos 2A.

cos2B + cos2A-cos2C = 1-4sin A sin B cos C

(sin^(2)A-sin^(2)B)/(sin A cos A-sin B cos B) is equal to (a) sin A cos A-sin B cos Btan(A-B)(b)tan(A+B)cot(A-B)(d)cot(A+B)

Prove that (sin^Acos^B-cos^2Asin^2B)=(sin^2A-sin^2B)