Home
Class 12
MATHS
cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8...

`cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(4)(pi/8)+cos^(4)((3 pi)/8)+sin^(4)((5pi)/8)+cos^(4)((7pi)/8) is equal to =

Prove that: cos^(2)pi/8 + cos^(2)(3pi)/(8) + cos^(2)(5pi)/(8)+ cos^(2)(7pi)/(8)=2

Prove that cos((pi)/(8))+cos((3 pi)/(8))+cos((5 pi)/(8))+cos((7 pi)/(8))=0

Prove that: cos^(4)(pi)/(8)+cos^(4)(3 pi)/(8)+cos^(4)(5 pi)/(8)+cos^(4)(7 pi)/(8)=(3)/(2)

Prove that (1 + cos(pi/8))(1 + cos(3pi/8))(1 + cos(5pi/8))(1 + cos(7pi/8)) = 1/8

The value of cos(pi)/(8)cos(3 pi)/(8)cos(5 pi)/(8)cos(7 pi)/(8) is equal to

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II cos^2pi/8+cos^2(3pi )/8+cos^2(5pi)/8+cos^2(7pi/8)=2 Statement III: sin^2pi/8+sin^(3pi)/8+sin^2(5pi)/8sin^2 (7pi)/8=3/2

Value of cos^3 (pi/8)cos^3 ((3pi)/8) + sin^3 (pi/8)sin^3 ((3pi)/8) is