Home
Class 12
MATHS
Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5...

Prove that: `sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

Provet that: sin^(2)72^(2)-sin^(2)60^(2)=(sqrt(5)-1)/(8)

Prove that: sin^(2)42^(2)-cos^(2)78^(@)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that: sin^(2)(72^(@))-sin^(2)(60^(@))=(sqrt(5)-1)/(8)

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

Prove that (i) "sin"^(2) 24^(@) - sin^(2) 6^(@) =((sqrt(5)-1))/(8) " "(ii) "sin"^(2) 72^(@) - cos^(2) 30^(@) =(sqrt(5)-1)/(8)

Prove that: sin12^(0)sin48^(0)sin54^(@)=(1)/(8)

Prove that : sin 75^0 = (sqrt(6) + sqrt(2))/4