Home
Class 12
MATHS
If alpha and beta be two different roots...

If `alpha and beta` be two different roots of equation, `a cos theta + b sin theta = c`, prove that `sin (alpha + beta) = (2ab)/(a^2 +b^2).`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be the two different roots of equation a cos theta+b sin theta=c ,prove that : tan(alpha+beta)=(2ab)/(a^(2)-b^(2))

If alpha and beta be two different roots of the equation acos theta + b sin theta = c then prove that cos(alpha +beta) =(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are distict roots of a cos theta+b sin theta=c, prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha,beta are the roots of the equation a cos theta+b sin theta=c, then prove that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha, beta be the solutions of theta for the equation a tan theta + b sec theta = c then prove that tan(alpha+ beta) = 2ac/(a^(2)-c^(2)) .