Home
Class 12
MATHS
Show that : 3 (sin x - cos x)^4 + 6 (sin...

Show that : `3 (sin x - cos x)^4 + 6 (sin x + cos x)^2 + 4(sin^6 x + cos^6 x) = 13`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

The value of 3(sinx - cosx)^4 + 6(sinx + cosx)^2 + 4 (sin^6 x + cos^6 x) is

Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

If f(x) = 3(sin x - cos x)^(4) + 6(sin x + cos x)^(2) +4(sin^(6)x + cos^(6)x) and f(pi/7) = 13 then find f (2pi/7) .

Prove that 3 (sin x-cos x) ^ (4) +4 (sin ^ (6) x + cos ^ (6) x) +6 (sin x + cos x) ^ (2) = 13

2 [ sin x - cos x ]^(4) + 6 [ sin x + cos x ]^(2) + 5 [ sin^(6)x + cos^(6) x ] = ? (a)6 (b)4 (c)3 (d)13

Prove that: 3(sin x-cos x)^(4)+4(sin^(6)x+cos^(6)x)+6(sin x+cos x)^(2)=13

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x