Home
Class 12
MATHS
Show that : 2 (sin^6 x + cos^6 x) -3 (si...

Show that : `2 (sin^6 x + cos^6 x) -3 (sin^4 x + cos^4 x) + 1 =0`.

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the value of : 2 (sin^(6) x + cos^(6)x) - 3 (sin^(4) x + cos ^(4)x) + 2 .

Show that 2(sin^6x+cos^6x)-3(sin^4x+cos^4x)+1=0 .

Knowledge Check

  • int (sin^6x+cos^6x+3 sin^2x cos^2 x)dx is equal to

    A
    x+c
    B
    `3/2 "sin"2x+C`
    C
    `-3/2 "cos2x+C`
    D
    `1/3"sin"3x-cos 3x+C`
  • 3 ( sin x - cos x )^(4) + 6 ( sin x + cos x )^(2) + 4 ( sin ^(6) x + cos ^(6) x ) is

    A
    9
    B
    10
    C
    13
    D
    6
  • 3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

    A
    14
    B
    11
    C
    12
    D
    13
  • Similar Questions

    Explore conceptually related problems

    Prove that 3 (sin x-cos x) ^ (4) +4 (sin ^ (6) x + cos ^ (6) x) +6 (sin x + cos x) ^ (2) = 13

    (2 cos x-3 sin x)/(6 cos x+4 sin x)

    Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

    Find the value of: 2("sin"^(6)x+cos^(6)x)-3("sin"^(4)x+cos^(4)x)+2 .

    If "sin" x + "sin"^(2) x = 1 show that: cos^(4)x + cos^(2)x = 1 (ii) If "sin" x + cos x =sqrt(2) cos x show that: sqrt2 sin x = cos x - sin x