Home
Class 12
MATHS
Show that : cos^2 theta + cos^2 (alpha+t...

Show that : `cos^2 theta + cos^2 (alpha+theta) - 2 cos alpha cos theta cos (alpha + theta)` is independent of `theta`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(2)theta + cos^(2)(alpha + theta) – 2cos alpha *cos theta* cos(alpha +theta) is independent of theta .

Show that cos^(2)theta+cos^(2)theta(alpha+theta)-2cos alpha cos theta cos(alpha+theta) is independent of theta.

Prove that the expression cos^(2)theta+cos^(2)(alpha+theta)-2cos alpha cos theta cos(alpha+theta) is independent of theta and also find the maximum value of the expression.

The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alpha sin theta + cos2(alpha + theta ) is independent of theta , the value of n is

Prove that :2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta) is independent of theta.

If : cos 2 theta = sin alpha , then : theta is given by

Prove that: cos^(2)theta=cos^(2)alpha then theta=n pi+-alpha,n in Z

The value of 2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta)