Home
Class 12
MATHS
Prove the following identity: 4(cos^3 10...

Prove the following identity: `4(cos^3 10^0+sin^3\ \ 20^0)=\ 3\ (cos 10^0+s in 20^0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identity: 4(cos^(3)10^(0)+sin^(3)20^(@))=3(cos10^(0)+sin20^(@))

Prove the following Identities cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

Prove the following 4(cos^(3)10^(@)+sin^(3)20^(@))=3(cos10^(@)+sin20^(@))

(2cos 40^0-cos 20^0)/(sin 20^0)=

[Prove the following 8cos^(3)10^(@)-8sin^(3)20^(@)-6cos10^(@)+6sin20^(@)=2sqrt(3)

Prove the following identity: (1-s in A cos A)/(cos A(sec A-cos ecA))(sin^(2)A-cos^(2))/(sin^(3)A+cos^(3)A)=sin A

Prove the following identity: (sn^(3)A+cos^(3)A)/(s in A+1-tan A)+(sin^(3)-cos^(3)A)/(s in A-cos A)=2

4\ cos\ 20^0\ -sqrt(3)\ cot\ 20^0\ =

Which of the following numbers is/are twin prime with 5(C)4((cos^(3)10^(0)+sin^(3)20^(@))/(cos10^(0)+sin20^(@)))(D)(cos68^(@))/(sin56^(@)sin34^(0)tan22^(@))

Prove each of the following identities : ((sin A - sin B))/((cos A + cos B)) + (( cos A - cos B))/((sin A + sin B)) =0