Home
Class 12
MATHS
If alpha and beta are acute angles and c...

If `alpha and beta` are acute angles and `cos 2alpha = (3cos 2beta -1)/(3-cos 2beta).` Prove that : `tan alpha = sqrt(2) tan beta`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are acute angles and cos 2alpha = (3cos2beta -1)/(3-cos2 beta) prove that tan alpha tan beta= sqrt2 :1 .

alpha and beta are acute angles and cos2 alpha=(3cos2 beta-1)/(3-cos2 beta) then tan alpha cot beta=

If alpha and beta be acute angles and cos2 alpha=(3cos2 beta-1)/(3-cos2 beta), then tan alpha is :

If alpha and beta are acute angles satisfying cos2 alpha=(3cos2 beta-1)/(3-cos2 beta), then tan alpha=sqrt(2)tan beta (b) (1)/(sqrt(2))tan beta(c)sqrt(2)cot beta(d)(1)/(sqrt(2))cot beta

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

If cos2alpha=(3cos2beta-1)/(3-cos2beta) , then tan alpha is equal to

If alpha and beta are positive.acute angles and cos2 alpha=(n cos2 beta-1)/(n-cos2 beta)(n<1), show that sqrt(n-1)tan alpha=sqrt(n+1)tan beta

If 2(tan alpha)/(2)=(tan beta)/(2), prove that cos alpha=(3+5cos beta)/(5+3cos beta)

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then