Home
Class 12
MATHS
If tan beta = 3 tan alpha, prove that ta...

If `tan beta = 3 tan alpha,` prove that `tan (alpha + beta) = (2sin 2beta)/(1+cos 2beta)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If 2tan alpha=3tan beta, prove that tan(alpha-beta)=(sin2 beta)/(5-cos2 beta)

If 2tan alpha=3tan beta, prove that tan(alpha-beta)=(sin2 beta)/(5-cos2 beta)

If 2tan beta+cot beta=tan alpha, prove that cot beta=2tan(alpha-beta)

If 2tan alpha=3tan beta then tan(alpha-beta)=

If n tan alpha=(n+1)tan beta then show that tan(alpha-beta)=(sin2 beta)/(2n+1-cos2 beta)

If 3tan alpha=4tan beta ,then prove that tan(alpha-beta)=(sin beta*cos beta)/(3+sin^(2)beta)=(tan beta)/(4tan^(2)beta+3)

If 2tan alpha=3tan beta, then tan (alpha-beta)=(sin2 beta)/(5-cos2 beta)(b)(cos2 beta)/(5-cos2 beta)(c)(sin2 beta)/(5+cos2 beta)(d) none of these

if 3tan alpha=4tan beta then prove that tan(alpha-beta)=(tan beta)/(4tan^(2)beta+3)=(sin beta*cos beta)/(3+sin^(2)beta)