Home
Class 12
MATHS
If alpha = pi/3, prove that cos alpha*co...

If `alpha = pi/3`, prove that `cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha = (pi)/(13), Prove that cos alpha cos 2alpha cos 3alpha cos 4alpha cos 5alpha cos 6alpha = (1)/(64) .

cos alpha*cos60-alpha*cos60+alpha-(1)/(4)cos3 alpha

prove that (sin alpha+sin3 alpha+sin5 alpha)/(cos alpha+cos3 alpha+cos5 alpha)=tan3 alpha

cos2 alpha-cos3alpha-cos4alpha+cos5alpha simplifies to :

Prove that (cot alpha+cos ec alpha-1)/(cot alpha-cos ec alpha+1)=(1+cos alpha)/(sin alpha)

If alpha=(pi)/(17), show that (cos alpha cos13 alpha)/(cos3 alpha+cos5 alpha)=-(1)/(2)

If alpha=pi/12 ,prove that frac((cosalpha+isinalpha)(cos2alpha+isin2alpha))(cos3alpha-isin3alpha)=i .

Prove that |cos alpha-cos beta|<=| alpha-beta|

The value of (sin5 alpha-sin3 alpha)/(cos5 alpha+2cos4 alpha+cos3 alpha) is