Home
Class 12
MATHS
Prove that (2 sin theta - sin 2theta)/(2...

Prove that `(2 sin theta - sin 2theta)/(2 sin theta + sin 2theta) = tan^2\ theta/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

(2sin theta-sin2 theta)/(2sin theta+sin2 theta)=tan^(2)((theta)/(2))

Prove that : (1+sin2 theta-cos 2theta)/(sin theta+cos theta)=2sin theta

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .

Prove that :(cos theta-sin theta)/(cos theta+sin theta)=sec2 theta-tan2 theta

(cos theta-sin theta) / (cos theta + sin theta) = sec2 theta-tan2 theta

Prove that :(sin5 theta-2sin3 theta+sin theta)/(cos5 theta-cos theta)=tan theta

Prove that: (i) (1+"sin" 2theta-cos 2theta)/(1+"sin" 2theta+cos 2theta)="tan" theta . (ii) 2 tan 2x=(cos x+"sin" x)/(cos x-"sin" x)-(cos x-"sin" x)/(cos x+"sin" x) .

Prove that (cos theta-sin theta)/(cos theta+sin theta)=sec2theta-tan2theta

Prove that :(1+sin theta-cos theta)/(1+sin theta+cos theta)=tan backslash(theta)/(2)