Home
Class 12
MATHS
If cosx=-1/3, pi < x < (3pi)/2 then find...

If `cosx=-1/3, pi < x < (3pi)/2` then find the values of `sin(x/2)` and `tan(x/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosx =(-1)/(3) and pi lt x lt (3pi)/(2) Find the value of cos (x/2) , tan (x/2)

If (2cosx-1)(3+2cosx)=0, 0lexle2pi, then x=

The number of solution of cosx=|1+sinx|,0lexle3pi is

Simplest form of tan^(-1)((sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))), pi lt x lt (3pi)/2 is :

Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))}, -pi

In the interval [-pi/4,pi/4] the number of real solutions of the equations |[sinx , cosx ,cosx],[cosx, sinx, cosx],[cosx , cosx , sinx]| =0

If cosx(3sinx+cosx+3)dy=dx+ysinx(cosx+3+3sinx)dx then y(pi/3) equal to

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .