Home
Class 12
MATHS
Show that cot (142\ 1/2) ^@ = sqrt(2) + ...

Show that `cot (142\ 1/2) ^@ = sqrt(2) + sqrt(3) - 2 - sqrt(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cot 142.5^circ = sqrt2 + sqrt3 - sqrt4 - sqrt6 .

Prove that: tan142(1^(@))/(2)=2+sqrt(2)-sqrt(3)-sqrt(6)

Prove that, cot 7 1/2 ^@ or tan 82 1/2 ^@ = (sqrt(3)+sqrt(2))(sqrt(2)+1) or sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Show that : cot^(-1) [(sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))]= x/2

(6 + sqrt(27) ) - ( 3 + sqrt3) + (1-2sqrt3)

Prove that: cot(pi)/(24)=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Show that (1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=0 .

Given that: sqrt(3) = 1.732, (sqrt(6) + sqrt(2)) / (sqrt(6)-sqrt(2)) is equal to:

The value of 5sqrt(3) + 7sqrt(2) - sqrt(6) - 23/(sqrt(2) + sqrt(3) + sqrt(6)) is:

Simplify: (i) (2 sqrt(2) + 3 sqrt(3)) (2 sqrt(2) - 3 sqrt(3)) (ii) (2 sqrt(8) - 3 sqrt(2))^(2) (iii) (sqrt(7) + sqrt(6))^(2) (iv) (6 - sqrt(2))(2 + sqrt(3))