Home
Class 12
MATHS
Prove that sin^2 48^@ - cos^2 12^@ = - (...

Prove that `sin^2 48^@ - cos^2 12^@ = - (sqrt(5) +1)/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that: sin^(2)42^(2)-cos^(2)78^(@)=(sqrt(5)+1)/(8)

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that (i) "sin"^(2) 24^(@) - sin^(2) 6^(@) =((sqrt(5)-1))/(8) " "(ii) "sin"^(2) 72^(@) - cos^(2) 30^(@) =(sqrt(5)-1)/(8)

sin ^ (2) 48 ^ (0) -cos ^ (2) 12 ^ (0) = - (sqrt (5 + 1)) / (8)

Prove that: sin^(2)(72^(@))-sin^(2)(60^(@))=(sqrt(5)-1)/(8)

Prove that (i) " 2 cos " 45^(@) " cos " 15^(@)=((sqrt(3)+1))/(2) " "(ii) 2 " sin " 75^(@) " sin " 15^(@)=(1)/(2) (iii) " cos " 15^(@) - " sin " 15 =(1)/(sqrt(2))