Home
Class 12
MATHS
Prove that: sin6^0cos42^0cos 60^0s in 78...

Prove that: `sin6^0cos42^0cos 60^0s in 78^0=1/(16)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin6^(@)cos42^(0)cos60^(@)quad in78^(0)=(1)/(16)

Prove that: sin6^(@)sin42^(@)sin66^(@)sin78^(@)=1/16

Prove that: cos78^(0)cos42^(0)cos36^(@)=(1)/(8)

Prove that: s in10^(0)s in50^(0)s in60^(0)s in70^(0)=(sqrt(3))/(16)

Prove that: s in47^(0)+cos77^(0)=cos17^(0)

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that cos6^(@)*cos42^(@)*cos66^(@)cos78^(@)=(1)/(16)

Prove that cos 6^(@) cos 42^(@) cos 66^(@) cos 78^(@) =(1)/(16)

Prove that :sin51^(0)+cos81^(0)=cos21^(0)

Prove that sin 6^(@) sin 42^(@) sin 66^(@) sin 78^(@) = (1)/(16) .