Home
Class 12
MATHS
If alpha, beta are the roots of the equa...

If `alpha, beta` are the roots of the equation `a cos theta + b sin theta = c`, then prove that `cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be two different roots of the equation acos theta + b sin theta = c then prove that cos(alpha +beta) =(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha, beta be the solutions of theta for the equation a tan theta + b sec theta = c then prove that tan(alpha+ beta) = 2ac/(a^(2)-c^(2)) .

If alpha "and " beta be two distinct real numbers such that (alpha-beta) ne 2 n pi for any integer n satisfying the equations a cos theta + b sin theta =c then prove that (i) "cos " (alpha+ beta) =(a^(2) -b^(2))/(a^(2) +b^(2)) " "(ii) "sin " (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))