Home
Class 12
MATHS
If tan (cot x) = cot (tan x), prove that...

If `tan (cot x) = cot (tan x)`, prove that : `sin 2x = 4/((2n+1) pi)`

Answer

Step by step text solution for If tan (cot x) = cot (tan x), prove that : sin 2x = 4/((2n+1) pi) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

cot x-2 cot 2x = tan x

tan^(-1)(cot x)+cot^(-1)(tan x)

Knowledge Check

  • If tan (cot x) = cot (tan x), then sin 2x is equal to :

    A
    `2/((2n+1)pi)`
    B
    `(4)/((2n+1) pi)`
    C
    `(2)/(n(n+1)pi)`
    D
    `(4)/(n(n+1)pi)`
  • sin 2x (tan x + cot x) = ?

    A
    `sin x cos x`
    B
    `cosec x sec x`
    C
    `2tan(2x)`
    D
    `2`
  • Similar Questions

    Explore conceptually related problems

    If tan(cottheta)= cot(tantheta) , then prove that: pi(2n+1)sin2theta=4

    If cos x=tan y,cot y=tan z and cot z=tan x, then sin x=

    If the equation tan (P cot x)=cot (P tan x) has a solution in x in (0, pi)-{pi/2} , then prove that P le pi/4 .

    Solve : (i) cos 3theta + 8 cos^(3) theta = 0 (ii) "tan" (pi cot x) = cot (pi tan x) (iii) 4 cos^(2) x sin x-2 "sin"^(2) x = 3 sin x

    Given f(x)=tan ^-1(cot x)+cot ^-1(tan x),(pi/2 lt x lt pi) , then |f^prime((2 pi)/3)-f^prime((5 pi)/6)| is equal to

    If tan ((p pi)/4)=cot ((qpi)/4) , then prove that p+q=2(2n+1), n in Z .