Home
Class 12
MATHS
If tan (cot x) = cot (tan x), prove that...

If `tan (cot x) = cot (tan x)`, prove that : `sin 2x = 4/((2n+1) pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

cot x-2 cot 2x = tan x

tan^(-1)(cot x)+cot^(-1)(tan x)

If tan(cottheta)= cot(tantheta) , then prove that: pi(2n+1)sin2theta=4

If cos x=tan y,cot y=tan z and cot z=tan x, then sin x=

If the equation tan (P cot x)=cot (P tan x) has a solution in x in (0, pi)-{pi/2} , then prove that P le pi/4 .

Solve : (i) cos 3theta + 8 cos^(3) theta = 0 (ii) "tan" (pi cot x) = cot (pi tan x) (iii) 4 cos^(2) x sin x-2 "sin"^(2) x = 3 sin x

If tan ((p pi)/4)=cot ((qpi)/4) , then prove that p+q=2(2n+1), n in Z .

sin 2x (tan x + cot x) = ?