Home
Class 12
MATHS
In a triangle ABC, prove that : a sin (A...

In a triangle `ABC`, prove that : `a sin (A/2 + B)=(b+c) sin (A/2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC , prove that a sin A-b sin B -=c sin (A-B) .

In any triangle ABC, prove that: a cos((B+C)/(2))=(b+c)(sin A)/(2)

In any triangle ABC,prove that a sin (B-C)+b sin(C-A)+c sin(A-B)=0

In triangle ABC , prove that a^2sin(B-C)=(b^2-c^2)sinA .

In any triangle ABC, prove that: a sin(B-C)+bs in(C-A)+c sin(A-B)=0

In any triangle ABC, prove that following: a(sin A)/(2)sin((B-C)/(2))+b(sin B)/(2)sin((C-A)/(2))+sin((A-B)/(2))=0

In a triangle ABC, prove b sin B-c sin C=a sin(B-C)

In any triangle ABC prove that: sin((B-C)/(2))=((b-c)/(a))(cos A)/(2)

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0