Home
Class 12
MATHS
For any triangle ABC, prove that (sin(B-...

For any triangle ABC, prove that `(sin(B-C)/(sin(B+C)=(b^2-c^2)/(a^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In triangle ABC , prove that (sin(A-B))/(sin(A+B))=(a^2-b^2)/(c^2) .

For any triangle ABC, prove that (sin(B-C))/(2)=(b-c)/(a)((cos A)/(2))])

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

In any Delta ABC, prove that (sin B)/(sin(B+C))=(b)/(a)

In triangle ABC , prove that a^2sin(B-C)=(b^2-c^2)sinA .

In any triangle ABC prove that: sin((B-C)/(2))=((b-c)/(a))(cos A)/(2)

In any triangle ABC, prove that following: a^(2)sin(B-C)=(b^(2)-c^(2))s in A

In any triangle ABC, prove that following: sin((B-C)/(2))=(b-c)/(a)(cos A)/(2)

In a triangle ABC, prove b sin B-c sin C=a sin(B-C)