Home
Class 12
MATHS
For any triangle ABC, prove that (b^2 c^...

For any triangle ABC, prove that `(b^2 c^2)"\ cot"A"\ "+"\ "(c^2 a^2)"\ cot"B"\ "+"\ "(a^2 b^2)"\ cot"C"\ "="\ "0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that: Delta=(b^(2)+c^(2)-a^(2))/(4cot a)

In a ABC, prove that: (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(a^(2)-b^(2))cot C=0

In any triangle ABC , prove that a(cosB+cot(A/2).sinB)=b+c .

In any /_ABC, prove that (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(c^(a)-b^(2))cot C=0

In any Delta ABC, prove that Delta=(b^(2)+c^(2)-a^(2))/(4cot A)

In a triangle ABC,if a cot A+b cot B+c cot C=

In any triangle ABC, prove that: (b-c)cot(A)/(2)+(c-a)cot(B)/(2)+(a-b)cot(C)/(2)=0

In any triangle ABC,a cot A+b cot B+c cot C is equal to

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

If A+B+C=pi , prove that: cot^2 A+cot^2 B + cot^2 C ge 1