Home
Class 12
MATHS
In a triangle A B C , if acosA=bcosB , s...

In a triangle `A B C ,` if `acosA=bcosB ,` show that the triangle is either isosceles or right angled.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if a cos A=b cos B, show that the triangle is either isosceles or right angled.

If a cos A = b cos B , prove that the Delta ABC is either isosceles or right angled.

In a triangle ABC, if cos A=(sin B)/(2sin C), show that the triangle is isosceles.

In triangleABC , if acosA=bcosB , then the triangle is

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

The angles A, B, C of a triangle ABC satisfy 4cosAcosB + sin2A + sin2B + sin2C = 4, Then which of the following statements is/are correct? (1) The triangle ABC is right angled (2) The triangle ABC is isosceles (3) The triangle ABC is neither isosceles nor right angled (4) The triangle ABC is equilateral

"In a "DeltaABC, if(cosA)/a=(cosB)/b,"show that the triangle is isosceles".

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC if 2cos B=(a)/(c), then the triangle is(A) Right angled (C) Isosceles (B) Equilateral (D) None of these

In Delta ABC , if (cos A)/(a) = (cos B)/(b) , then show that it is an isosceles triangle.