Home
Class 12
MATHS
In any triangle ABC, show that : 2a sin ...

In any triangle ABC, show that : `2a sin (B/2) sin (C/2)=(b+c-a) sin (A/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC,show that: 2a cos((B)/(2))cos((C)/(2))=(a+b+c)sin((A)/(2))

In any triangle ABC,prove that a sin (B-C)+b sin(C-A)+c sin(A-B)=0

In any triangle ABC, prove that following: b sin B-C sin C=a sin(B-C)

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))

If any triangle ABC, that: (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(csin(A-B))/(a^(2)-b^(2))

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

In any triangle ABC, prove that following: a(sin A)/(2)sin((B-C)/(2))+b(sin B)/(2)sin((C-A)/(2))+sin((A-B)/(2))=0

In any triangle ABC, prove that: a cos((B+C)/(2))=(b+c)(sin A)/(2)