Home
Class 12
MATHS
In any triangle ABC, show that : 2a cos ...

In any triangle ABC, show that : `2a cos (B/2) cos (C/2) = (a+b+c) sin (A/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, show that: 2a sin((B)/(2))sin((C)/(2))=(b+c-a)sin((A)/(2))

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

In any triangle ABC, prove that: a cos((B+C)/(2))=(b+c)(sin A)/(2)

if A, B and C are interior angles of a triangle ABC, then show that cos((B+C)/2) = sin (A/2)

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

Prove in any triangle ABC that (i) a(cos B+cos C)=2(b+c) "sin"^(2)(A)/(2) (ii) a(cos C- cosB)= 2(b-c )"cos"^(2)(A)/(2)

For any triangle ABC, prove that (b+c)cos(B+C)/(2)=a cos(B-C)/(2)

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

In any triangle ABC, prove that following: (cos^(2)B-cos^(2)C)/(b+c)+(cos^(2)C-cos^(2)A)/(c+a)+(cos^(2)A-cos^(2)B)/(a+b)=0

In any triangle ABC, prove that following: (a-b)(cos C)/(2)c sin((A-B)/(2))