Home
Class 12
MATHS
If (sin A)/(sin C) = (sin (A-B))/(sin (B...

If `(sin A)/(sin C) = (sin (A-B))/(sin (B-C))` , prove that `a^2, b^2 , c^2` are in A.P.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC , (sinA)(sinC) = (sin(A-B))/(sin(B-C)) , prove that a^(2),b^(2),c^(2) are in A.P.

If in a hat harr ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)), prove that a^(2),b^(2),c^(2) are in A.P.

In a Delta ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)), then a^(2),b^(2),c^(2) are in

If in a DeltaABC, sin A: sin C = sin (A - B): sin (B-C), then a^(2), b^(2), c^(2) are in

If in a /_ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)) then a^(2):b^(2):c^(2)

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

In a triangle ABC, if sin A sin (B-C)= sin c sin (A-B) , then prove that cotA, cotB, CotC are in AP.

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in A.P.

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in AP