Home
Class 12
MATHS
Prove that : tan^(-1)((x-y)/(1+xy)) + ta...

Prove that : `tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx))` = `tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((x-y)/(1+xy))+tan^(-1)((y-z)/(1+yz))+tan^(-1)((z-x)/(1+zx))=tan^(-1)((x^(r)-y^(r))/(1+x^(r)y^(r)))+tan^(-1)((y^(r)-z^(r))/(1+y^(r)z^(r)))+tan^(-1)((z^(r)-x^(r))/(1+z^(r)x^(r)))

If xy=1+a^(2) then show that tan^(-1)((1)/(a+x))+tan^(-1)((1)/(a+y))=tan^(-1)((1)/(a)),x+y+2a!=0

If x^(2)+y^(2)+z^(2)=r^(2) and x,y,z>0, then tan^(-1)((xy)/(zr))+tan^(-1)((yz)/(xz))+tan^(-1)((zx)/(yr)) is equal to

If 1/2"sin"^(-1)(2x)/(1+x^2)+1/2"cos"^(-1)(1-y^2)/(1+y^2)+1/3"tan"^(-1)(3z-z^3)/(1-3z^2)=5pi then x+y+z=

tan^(-1) x + tan^(-1) y + tan^(-1) z = (pi)/2 show that : xy + yz + zx = 1 .

" (a) "tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)(x+y+z-xyz)/(1-xy-yz-zx)

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=