Home
Class 12
MATHS
Write the simplest form : tan^(-1)( (sqr...

Write the simplest form : `tan^(-1)( (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))); (-1)/sqrt(2) le x le 1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

Write the simplest form : cos^(-1)(sqrt(((sqrt(1+x^2) +1)/(2sqrt(1+x^2))))

Write the simplest form : tan^(-1)(1/sqrt(x^2 -1)) , |x|gt1

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)

Write into the simplest form: cot^(-1)(sqrt(1+x^(2))+x)

tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),absxx le 1/sqrt2 , is equal to

Write simplest form: sin^(-1)(x^(2)sqrt(1-x^(2))+x sqrt(1-x^(4)))

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))