Home
Class 12
MATHS
Prove that : tan^(-1)(1/2) + tan^(-1)(1/...

Prove that : `tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that tan^(-1) (1/8) +tan^(-1) (1/5) =tan^(-1) (1/3)

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/4

Prove that tan^(-1). 1/2 +tan^(-1). 2/11 = tan^(-1) . 3/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

tan^(-1) . 3/5 +tan^(-1) . 1/4 = pi/2

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that : tan^(-1)2+tan^(-1)3=(3 pi)/(4)