Home
Class 12
MATHS
Prove that : tan^(-1)( (2a-b)/(bsqrt(3))...

Prove that : `tan^(-1)( (2a-b)/(bsqrt(3))) +tan^(-1)((2b-a)/(asqrt(3))) = pi/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

Prove that : tan^(-1)2+tan^(-1)3=(3 pi)/(4)

Prove that : tan^(-1)( (a^3 -b^3)/(1+a^3 b^3)) + tan^(-1)( (b^3 - c^3)/(1+b^3 c^3)) + tan^(-1)( (c^3 - a^3)/(1+c^3 a^3)) = 0

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

prove that: 2 tan ^(-1)x =(1)/(3) tan^(-1).(1)/( 7) = (pi)/(4)

Prove that tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)