Home
Class 12
MATHS
Prove that : tan^(-1) 1 + tan^(-1) 2 + t...

Prove that :` tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

Show that ( tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3) = pi

2tan^(-1)((1)/(3))+tan^(-1)((1)/(2))=

Prove that tan^(-1). 1/2 +tan^(-1). 2/11 = tan^(-1) . 3/4

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .

tan^(-1)a+tan^(-1)b=(pi)/(2)