Home
Class 12
MATHS
Prove that : tan^(-1) [2 cos(2sin^(-1)(1...

Prove that : `tan^(-1) [2 cos(2sin^(-1)(1/2))] = pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3 pi)/(4)

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Prove that (tan^(2)A-1)/(tan^(4)A-1)=cos^(2)A

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

Prove that tan(pi/4 +1/2 cos^(-1) (a/b)) + tan^(-1) (pi/4 -1/2 cos^(-1) (a/b)) =2b/a

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

Prove that tan^-1(1/4)+ tan^-1(2/9) = 1/2sin^-1(4/5)

Prove the following : sin^(-1)4/5+2\ tan^(-1)1/3=pi/2