Home
Class 12
MATHS
Prove that : tan(sin^(-1) (3/5) + cot^(-...

Prove that : `tan(sin^(-1) (3/5) + cot^(-1)(3/2)) = 17/6`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 2 sin^(-1)( 3/5) = tan^(-1)( 24/7)

Prove that sin ^(-1).(3)/(5) = tan ^(-1) .(3)/(4) .

Prove that: ,,2sin^(-1)(3)/(5)=tan^(-1)(24)/(7)

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that: sin^(-1)((3)/(5))+cos^(-1)((5)/(sqrt(26)))=tan^(-1)((19)/(17))

Prove that sin ^ (- 1) ((3) / (5)) + cos ^ (- 1) ((15) / (17)) + sin ^ (- 1) ((36) / (85)) = (pi) / (2)

Find the value of tan(sin^(-1)((3)/(5))+cot^(-1)((3)/(2)))

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

The value of tan[sin^(-1) (3/5)+tan^(-1) (2/3)] is