Home
Class 12
MATHS
Prove that : 2 sin^(-1)( 3/5) = tan^(-1)...

Prove that :` 2 sin^(-1)( 3/5) = tan^(-1)( 24/7)`

Text Solution

Verified by Experts

=`2 sin^(-1)(3/5)`
=`2 tan^(-1)(3/4)`
=`tan^(-1)(3/4)+tan^(-1)(3/4)`
=`tan^(-1)(((3/4)+(3/4))/(1-(3/4)(3/4)))`
=`tan^(-1)((24/16)/(7/16))`
=`tan^(-1)(24/7)`
hence proved
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: ,,2sin^(-1)(3)/(5)=tan^(-1)(24)/(7)

sin^(-1)(3/5)+tan^(-1)(1/7)=

Prove the following: 2\ sin^(-1)(3/5)=tan^(-1)(24/7)

Prove that 2 tan^(-1) ((3)/(4)) = tan^(-1) ((24)/(7))

Prove that sin ^(-1).(3)/(5) = tan ^(-1) .(3)/(4) .

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi

Prove that : tan(sin^(-1) (3/5) + cot^(-1)(3/2)) = 17/6

Prove that 2sin^(-1)[(3)/(5)]-tan^(-1)[(17)/(31)]=(pi)/(4)

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4