Home
Class 12
MATHS
Prove that : cos (2 sin^(-1) x) = 1-2x^2...

Prove that : `cos (2 sin^(-1) x) = 1-2x^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

prove that [cos(sin^(-1) x)]^(2) = [sin(cos^(-1) x)]^(2) .

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that : cos^(-1) (cos^(2)x - sin^(2)x) = 2x

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

Prove that :cos4x=1-8sin^(2)x cos^(2)x

prove that: sin ^ (4) x + cos ^ (4) x = 1- (1) / (2) sin ^ (2) 2x

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)