Home
Class 12
MATHS
Prove that : cos(sec^(-1) x+ cosec^(-1) ...

Prove that : `cos(sec^(-1) x+ cosec^(-1) x) =0, |x| ge 1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(sec^(-1)x+"cosec"^(-1)x)

Sove sec^(-1) x gt cosec^(-1) x

Is sec^(-1) (-x) = pi - sec^(-1) x , |x| ge 1 ?

"cosec"(sin^(-1)x+cos^(-1)x)

Evaluate: cos(sec^(-1)x+csc^(-1)x)|x|>=1

Find the maximum value of (sec^(-1) x) (cosec^(-1) x), x ge 1

if (sec ^ (- 1) x CSC ^ (- 1) x)

Write down the value of "cosec"^(-1)x +sec^(-1) x , when x ge 1 .

Draw the graph of y=sec^(-1)x+cosec^(-1)x

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]